The optimisation of a 5.7 air pressure ratio single stage radial-inflow turbine applied in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit (MPSPU) is performed using coupled CFD-FE method. The commercial software ANSYS-Vista RTD along with a built-in module, BladeGen, is used to conduct a meanline design and, consequently, create the 3D geometry of the flow passage. Carefully examining the proposed design against the geometrical and experimental data, ANSYS-TurboGrid is applied to generate computational mesh. CFD simulations are then performed with ANSYS-CFX in which three-dimensional Reynolds-Averaged Navier-Stokes equations are solved subject to appropriate boundary conditions. Conducting the CFD simulations, the pressure and temperature distributions are imported to the ANSYS-FE module. The von Mises stress σv distribution is then calculated taking into account the centrifugal force acting on the turbine wheel.

To obtain the optimised geometry, 25 major design points are regenerated where the meridional parameters, tip clearance, and blade thickness distribution are systematically changed. Furthermore, constraints are defined as high aerothermodynamic performance and acceptable vibration with a stress distribution less than yield limit of the turbine material. Results of coupled CFD-FE method show the power, efficiency, stress and deformation. Finally, performance of the optimised radial-inflow turbine indicates enhanced aero-thermodynamics (ηTS and) and structural performance (σv) compared to the MPSPU turbine design.

This content is only available via PDF.
You do not currently have access to this content.