Blade vibrations resulting in alternating stresses are often the critical factor in determining blade life. Indeed, many of the failures experienced by turbomachinery blades occur due to high-cycle fatigue caused by blade vibrations. These vibrations can arise either through self-excited oscillations known as flutter or through aerodynamic forcing of the blades from factors such as periodic wakes from up and/or downstream vanes or unsteady flow phenomena such as compressor surge.

The current paper deals with the design and the analytical and experimental verification of the axial blading for a new generation of industrial compressors, a hybrid axial compressor that combines the advantages of conventional industrial compressors — broad operating range and high efficiency — with the advantages of gas turbine compressors — high power-density and high stage pressure ratios. Additionally, the surge robustness of this novel compressor blading has been greatly improved. During the development phase extensive efforts were made to ensure safe operation for future service life. This was achieved by designing blades that will not flutter, do not have high resonance amplitudes throughout their entire operating range and are extremely robust against surge.

This strongly increased robustness of the new compressor blading was achieved by the implementation of a “wide-chord” blade design in all rotor blade rows in combination with a proper tuning of resonance frequencies throughout the entire operating range. For the verification of the new blading well-established methods accepted by industry were used such as CFD and FEA. Furthermore, coupling of the two into a method referred to as Fluid Structure Interaction (FSI) was used to more closely investigate the interaction of flow and structural dynamics phenomena. These analytical techniques have been used in conjunction with extensive testing of a scaled test compressor, which was operated at conditions of dynamic similitude (matching of scaled blade vibration frequencies, flow conditions, and Mach number) with full-scale operational conditions. Strain gauges placed on the blades and a state of the art technique known as “tip timing” were used to verify blade vibrations over a wide range of combinations of guide vane positions and rotational speeds.

No propensity was found of any of the blades to develop high vibration amplitudes at any of the operating conditions investigated in the rig tests. The comparison of non-linear forced response analyses and the rig test results from strain gauges and tip timing showed close agreement, verifying the analysis techniques used.

In conclusion it can be stated that the blade design exhibits a very high level of safety against vibrations within the entire operating range and during surge.

This content is only available via PDF.
You do not currently have access to this content.