Thermal barrier coatings (TBC), in combination with sophisticated cooling systems are crucial for the operation of highly efficient gas turbines. New generations of coatings will need to show increased cycling capability as a future energy mix will contain a high proportion of renewable energy which will be subject to rapid changes in supply. This will require gas turbines to be on stand-by to fill shortages in power supply with short notice. Furthermore, higher operating temperatures are sought to improve the efficiency of the engine. It is, therefore, an aim of the industry to find a coating composition or structure which will enable the operation at temperatures greater than 1250°C and with high cycling capability.

Test methods are required to meet these new operating conditions to validate new coatings. The maximum temperature limit of commonly used isothermal or cyclic oxidation tests is usually the temperature at which the substrate will start to significantly oxidise. However, there is the technical need to test the ceramic top layer at elevated surface temperatures up to 1500°C while keeping the substrate ‘cool’. Such capability would allow the effects of ceramic sintering, and deposit induced damage to be assessed at the TBC surface. This only can be performed on a complete coating system, when a thermal gradient is established throughout the coating.

This paper reviews a burner test facility, designed and built by Sensor Coating Systems Ltd. (SCS), which combines severe and frequent cycling with the exposure of the coating to high surface temperatures and active cooling of the substrate. Further, this test can include thermal shock by active cooling of the surface at the end of each cycle. The paper will consider different operating conditions and will review experiences in building and operating the rig, including results from thermal barrier coating tests on electron beam physical vapour deposition (EBPVD) and atmospheric plasma spray (APS) samples. Further, the rig is capable of testing optical techniques such as pyrometry and thermographic phosphor thermometry for measuring surface temperature in controlled laboratory conditions and example of this will be presented. The paper also will reflect on the ISO 13123:201 standard for this type of test.

This content is only available via PDF.
You do not currently have access to this content.