Modern aero-engine development requires also a gradual increase in the overall effectiveness of lubrication systems. This particularly applies to bearing chambers where a complex two-phase flow is formed by the interaction of the sealing air and the lubrication oil. It is important to increase the level of understanding of the flow field inside the bearing chamber and to develop engineering tools in order to optimize its design and improve its performance. To achieve this an experimental and a computational study of the whole front bearing chamber were carried out for a range of shaft rotational speeds and sealing air mass flow.
The experimental measurements of the air velocity inside the chamber were carried out using a Laser Doppler Anemometer (LDA) in two-phase air/oil flow conditions. The experimental facility is a 1:1 scale model of the front bearing chamber of an aero-engine.
Computational 3D modeling of the bearing chamber was performed. The bearing gap and the presence of lubrication oil was modeled as an anisotropic porous medium with functions relating the pressure loss of the air coming through the gap and the tangential component of velocity of the air exiting the gap of the ball bearing with the air-flow rate through the gap and the rotational speed of the shaft. The methodology to obtain the above mentioned functions and the results of the detailed study are given in [1].
The enhanced computational model of the chamber implementing the law of pressure drop of the ‘lubricated’ bearing and the function of modeling the tangential velocity of the air exiting the bearing, was used to calculate the flow field for the full range of the measurements. A limiting curve dividing the operational map of the bearing chamber into two areas was predicted. Large vortical and swirling structures dominate the flow and they vary in size according to the position of the operation point relative to the limiting curve. Operation above the limiting curve leads to flow classified as type I with air going through the ball bearing while for operation below the limiting curve line the flow is classified as type II, there is no air-flow through the bearing gap.