The understanding of the heat transfer and flow field behavior of rotating systems is essential from a fundamental point of view and for turbo machinery design. The majority of the publications considers enclosed rotating disk systems and only little is known about the convective heat transfer of free rotating disk systems in a forced flow. In this paper, a free rotating disk system, with particular look on the angle of incidence was investigated. The convective heat transfer from a rotating disk depends at least on three characteristic variables, namely the crossflow, rotational Reynolds numbers and the angle of incidence which are determining the mean Nusselt number. A clear study of the symmetry behavior of the flow field was conducted based on the measurement of the convective heat transfer coefficients. The angle of incidence was scanned with high angular resolution over the entire range between the both extreme cases of a perpendicular disk and a disk in a parallel forced flow. A large number of crossflow and rotational Reynolds numbers were covered by the experiments, too. Based on the experimental and theoretical results, a discussion of the different phenomena and heat transfer regimes is given in this paper.

This content is only available via PDF.
You do not currently have access to this content.