The film cooling ejection on High Pressure (Hp) turbine component surface is strongly affected by the complex flow structure in the nozzle guide vane or rotor blade passages. The action of secondary flow in the main passage could dominate the film cooling effectiveness distribution on the component surfaces. The film cooling ejections from endwall and airfoil trailing edge are mixed by the secondary flow. Considering a small part of the coolant ejection from trailing edge discharge flow will move from the airfoil trailing edge pressure side to endwall downstream and then cover some area, the interaction between the coolants injected from endwall and airfoil trailing edge is worth investigating. Though the temperature of coolant discharge flow from trailing edge increases after the mixing process in the internal cooling procedure, the ejections moving from airfoil to endwall still have the potential of second order cooling. This part of the coolant is called “Phantom cooling flow” in the paper. A typical scale-up model of Hp turbine NGV is used in the experiment to investigate the cooling performance of ejection from trailing edge. Instead of the airfoil trailing edge platform itself, the film cooling effectiveness is measured on the downstream part of the endwall. This paper is focused on the trailing edge discharge flow with compound angle effects and the coolant from discharge holes moving from trailing edge to endwall surface. The coolant flow is injected from the straight discharge holes with a compound angle of 15deg and 45deg respectively. The film cooling holes on the endwall are used simultaneously to investigate the combined effects. The blowing ratio and different configurations of compound angle holes are selected to be the changing parameters in the paper. The experiment is completed with the blowing ratio changing from M = 0.7 to M = 1.3 and the compound angle is introduced to the entire row of trailing edge discharge holes (full span), with inlet Reynolds numbers of Re = 3.5×105 and an inlet Mach number of Ma = 0.1.
Skip Nav Destination
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
June 16–20, 2014
Düsseldorf, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4572-1
PROCEEDINGS PAPER
Experimental Investigation of Turbine Phantom Cooling on Endwall With Trailing Edge Discharge Flow
Yang Zhang,
Yang Zhang
Tsinghua University, Beijing, China
Search for other works by this author on:
Xin Yuan
Xin Yuan
Tsinghua University, Beijing, China
Search for other works by this author on:
Yang Zhang
Tsinghua University, Beijing, China
Xin Yuan
Tsinghua University, Beijing, China
Paper No:
GT2014-26781, V05BT13A052; 14 pages
Published Online:
September 18, 2014
Citation
Zhang, Y, & Yuan, X. "Experimental Investigation of Turbine Phantom Cooling on Endwall With Trailing Edge Discharge Flow." Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5B: Heat Transfer. Düsseldorf, Germany. June 16–20, 2014. V05BT13A052. ASME. https://doi.org/10.1115/GT2014-26781
Download citation file:
46
Views
Related Proceedings Papers
Related Articles
Estimating the Loss Associated With Film Cooling for a Turbine Stage
J. Turbomach (March,2012)
Film-Cooling Effectiveness on a Rotating Turbine Platform Using Pressure Sensitive Paint Technique
J. Turbomach (October,2010)
Heat Transfer and Film Cooling of Blade Tips and Endwalls
J. Turbomach (July,2012)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Thermodynamic Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential