Applying a new non-axisymmetric endwall contouring technology introduced by Turbomachinery Performance and Flow Research Laboratory (TPFL) at Texas A&M University to the second rotor row of a three-stage research turbine, has shown that for a single rotor row a major turbine efficiency improvement can be achieved [1]. Motivated by these results, comprehensive numerical and experimental investigations on the TPFL research turbine were conducted to determine the impact of the endwall contouring on film cooling effectiveness. For this investigation, the first rotor row directly subjected to the purge flow injection was chosen to which the new contouring technology was applied. Performing an extensive RANS simulation by using the boundary conditions from the experiments, aerodynamics, performance and film cooling effectiveness studies were performed by varying the injection blowing ratio and turbine rotational speed. Performance measurements were carried out within a rotational speed range of 1800 to 3000 RPM. The corresponding CFD simulations were carried out for four rotational speeds, 2000, 2400, 2600, and 3000 rpm. Comparison of the RANS aerodynamics simulation with experiments reveals noticeable differences. Considering the film cooling effectiveness, major differences between experiment and numerical results were observed and discussed in the paper.
Skip Nav Destination
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
June 16–20, 2014
Düsseldorf, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4572-1
PROCEEDINGS PAPER
A Combined Numerical and Experimental Study of the Effect of Non-Axisymmetric Contouring on Performance and Film Cooling Behavior of a Rotating Turbine Endwall
M. Rezasoltani,
M. Rezasoltani
Texas A&M University, College Station, TX
Search for other works by this author on:
M. T. Schobeiri,
M. T. Schobeiri
Texas A&M University, College Station, TX
Search for other works by this author on:
J. C. Han
J. C. Han
Texas A&M University, College Station, TX
Search for other works by this author on:
K. Lu
Texas A&M University, College Station, TX
M. Rezasoltani
Texas A&M University, College Station, TX
M. T. Schobeiri
Texas A&M University, College Station, TX
J. C. Han
Texas A&M University, College Station, TX
Paper No:
GT2014-25659, V05BT13A020; 15 pages
Published Online:
September 18, 2014
Citation
Lu, K, Rezasoltani, M, Schobeiri, MT, & Han, JC. "A Combined Numerical and Experimental Study of the Effect of Non-Axisymmetric Contouring on Performance and Film Cooling Behavior of a Rotating Turbine Endwall." Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5B: Heat Transfer. Düsseldorf, Germany. June 16–20, 2014. V05BT13A020. ASME. https://doi.org/10.1115/GT2014-25659
Download citation file:
29
Views
Related Proceedings Papers
Related Articles
Application of a Navier–Stokes Solver to the Study of Open Rotor Aerodynamics
J. Turbomach (July,2011)
Prediction of Steady and Unsteady Flow Quantities Using Multiscale Graph Neural Networks
J. Turbomach (July,2025)
Development and Aerothermal Investigation of Integrated Combustor Vane Concept
J. Turbomach (January,2016)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Introduction
Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis
Hydraulic Turbomachines
Mechanical Energy Conversion: Exercises for Scaling Renewable Energy Systems