A tripod cylindrical film hole with asymmetric side holes is studied numerically and experimentally on a flat plate for higher film cooling effectiveness. Firstly, the influences of geometrical parameters are studied and the optimum configurations of the asymmetric tripod hole are found in a DoE optimization study based on an improved numerical model for film cooling prediction, in which more than one hundred 3D CFD simulations are carried out. Then one optimum configuration of the asymmetric tripod hole is examined experimentally using pressure-sensitive paint (PSP) measurements, and compared against the experimental results of the simple cylindrical film hole and a well-designed shaped film hole.
The flow and heat transfer characteristics of the asymmetric tripod holes were explored from the DoE results. The side holes can form a shear vortex system or an anti-kidney vortex system when proper spanwise distances of them are adopted, which laterally transports the coolant and form a favorable coolant coverage. According to the experimental results, the cooling performance of the optimized asymmetric tripod hole is significantly better than that of the simple cylindrical hole, especially at high blowing ratios. And the optimized asymmetric tripod hole can provide almost the same or even higher film cooling effectiveness on the flat plate compared with the shaped hole in the same flow conditions.