The research and development described in this paper arises from the need for modeling a realistic fuel atomization process in a complex combustor/augmentor fuel injector. In the atomization process, it is important to understand the primary breakup mechanism and to predict the resulting fuel droplets. However, the mechanism of atomization and the resulting spray formation processes in realistic complex fuel injectors are not well understood because experimental access to the atomization region is typically severely limited. A significant portion of the atomization process occurs in spatial regions adjacent to solid walls that block experimental access into the injector so that experimental studies are limited to either far field measurements of complex injectors, after most of the atomization has occurred, or to simple injector geometries such as a circular cross-section pipes injecting into crossflow channels.

This content is only available via PDF.
You do not currently have access to this content.