The threshold combustion performance of different fuel formulations under simulated altitude relight conditions were investigated in the altitude relight test facility located at the Rolls-Royce plc. Strategic Research Centre in Derby, UK. The combustor employed was a twin-sector representation of an RQL gas turbine combustor. Eight fuels including conventional crude-derived Jet A-1 kerosene, synthetic paraffinic kerosenes (SPKs), linear paraffinic solvents, aromatic solvents and pure compounds were tested. The combustor was operated at sub-atmospheric air pressure of 41 kPa and air temperature of 265 K. The temperature of all fuels was regulated to 288 K. The combustor operating conditions corresponded to a low stratospheric flight altitude near 9 kilometres.

The experimental work at the Rolls-Royce (RR) test-rig consisted of classical relight envelope ignition and extinction tests, and ancillary optical measurements: Simultaneous high-speed imaging of the OH* chemiluminescence and of the soot luminosity was used to visualize both the transient combustion phenomena and the combustion behaviour of the steady burning flames. Flame luminosity spectra were also simultaneously recorded with a spectrometer to obtain information about the different combustion intermediates and about the thermal soot radiation curve. This paper presents first results from the analysis of the weak extinction measurements. Further detailed test fuel results are the subject of a separate complementary paper [1].

It was found in general that the determined weak extinction parameters were not strongly dependent on the fuels investigated, however at the leading edge of the OH* chemiluminescence intensity development in the pre-flame region fuel-related differences were observed.

This content is only available via PDF.
You do not currently have access to this content.