Supercritical CO2 closed-loop Brayton cycles offer the potential of better economical and practical efficiency due to its compact size and smaller compression work as compared with some traditional working fluids cycles, in which compressor is the key component. In this paper, the aerodynamic design and impeller aerodynamic optimization were conducted for a single stage centrifugal compressor with a combined vaneless and vaned diffuser, operating with CO2 slightly above the vapor-liquid critical point. The NIST REFPROP database was used for the computation of supercritical CO2 properties in design analysis and numerical investigation. The flow characteristics of the supercritical CO2 compressor were investigated by NUMECA FINE/Turbo. In order to weaken the low pressure regions, a vaneless diffuser was applied in this design, which would control and reduce the distribution differences of fluid thermodynamic states and increase fluid static pressure. The results indicate that there are no obvious low pressure regions occurring close to the leading edge of vaned diffuser. So it is observed in the design process that the vaneless diffuser could improve the aerodynamic performance of supercritical CO2 compressor.

Compared with the operating conditions of the compressor only under centrifugal force, the pressure load from the aerodynamic analysis and the centrifugal load due to high speed of rotation were considered in the study of the stress and deformation of the structure of impeller by ANSYS/Mechanical. It can be concluded that supercritical CO2 provides unique properties for the compressor working process, which have a significant influence on finite element modeling in structural analysis. For the present design the maximum von Mises stress and total deformation are shown much smaller than the maximum allowable values, and thus the compressor could work in a wide range of operating conditions.

This content is only available via PDF.
You do not currently have access to this content.