Bleed slots located in the inducer region of centrifugal compressors have been demonstrated to extend the surge margin with minimal negative impact on performance. This paper describes the investigation of the effect of a bleed slot on map width enhancement of a turbocharger centrifugal compressor used for heavy duty diesel engine application. The goal is to evaluate the overall pressure instabilities on the compressor map and to study the dynamic phenomena occurring at low mass flow rates to better understand the benefits of the bleed slot on the compressor stability and surge line. The obstruction of the bleed slot permitted to compare the compressor behavior with the recirculation feature and without it. The pressure instability levels were measured along the accessible compressor map for the two cases using a high speed response pressure transducer at the compressor outlet. In addition, static and dynamic pressure measurements were conducted within the diffuser using respectively pressure taps and high speed response pressure transducers. The compressor with open bleed slot proved to have lower instability levels at low mass flow rates when not experiencing deep surge. Frequency responses at low mass flow rates showed that the implementation of the bleed slot suppresses broad band frequencies below the rpm frequency, which improves the overall stability. These frequencies are associated with rotating instabilities (RIs) with changing propagation speed depending on the rotational speed. At lower speeds, RIs are propagated with the wheel rotation whereas at higher speeds, they tend to propagate with the speed associated with their characteristic frequency.

This content is only available via PDF.
You do not currently have access to this content.