The combination of variable speed control and adjustable diffuser vanes offers an attractive design option for centrifugal compressors applied in industrial applications where a wide operating range at high efficiency level and a favorable surge line is required. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall which is mandatory since the diffuser geometry adjustment has to take place during operation, is still not satisfying.

This two-part paper summarizes results of investigations performed at the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen with an industrial-like centrifugal compressor, featuring a design pressure ratio of 4 and a design speed of 35200 rpm. Particular attention was directed to the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed.

Compressor map measurements provide a summary of the operating behavior related to diffuser geometry and impeller speed, whereas detailed flow measurements with temperature and pressure probes allow a breakdown of the losses between impeller and diffuser and contribute to a better understanding of relevant flow phenomena. The results presented in Part I show that an one-sided diffuser clearance does not necessarily has a negative impact on the operation and loss behavior of the centrifugal compressor, but instead may contribute to an increased pressure ratio and improved efficiency.

The flow phenomena responsible for this detected performance behavior are exposed in Part II [28], where the results of detailed measurements with pressure probes at diffuser exit and Particle Image Velocimetry (PIV) measurements conducted inside the diffuser channel, revealing the complex and unsteady flow leaving the impeller and passing the diffuser channel, are discussed.

The experimental results are published as an open CFD testcase “Radiver 2” [26], extending the experimental data base of the testcase “Radiver” published in 2003 by Ziegler [31].

This content is only available via PDF.
You do not currently have access to this content.