In this research the design methods of radial flow compressor volutes are reviewed and the main criterions in volute primary designs are recognized and most effective ones are selected. The effective parameters i.e. spiral cross section area, circumferential area distribution, exit cone and tongue area of the compressor volute are parametrically studied to identifythe optimum values.

A numerical model is prepared and verified through experimental data which are obtained from the designed turbocharger test rig. Different volutes are modeled and numerically evaluated using the same impeller and vane-less diffuser. For each model, the volute total pressure ratio, static pressure recovery and total pressure loss coefficients and the radial force on the impeller are calculated for different mass flow rates at design point and off-design conditions. The volute which shows better performanceand causes lower the net radial force on the impeller, at desiredmass flow rates is selected as an optimal one.

The results show the volute design approach differences at the design point and off-design conditions. Improving the pressure ratio and reducing total pressure loss at design point, may result inthe worse conditions at off-design conditions as well as increasing radial force on the impeller.

This content is only available via PDF.
You do not currently have access to this content.