An innovative computational approach, integrating mesh generation, CFD simultaneous analysis of noise source and propagation, with acoustic radiation, is presented and applied to the simulation of the Advanced Noise Control Fan (ANCF) developed by NASA Glenn Research Center.

The tonal noise source and the sound propagation in the nacelle duct and in the nacelle near field are simultaneously predicted, starting from the engine geometry and parameters, with a single CFD analysis based on an efficient Nonlinear Harmonic (NLH) method. The sound radiation to the far field is computed with the Green’s function approach implemented in a BEM frequency domain solver of the convective Helmholtz equation.

The present method provides to a gain of close to two orders of magnitude compared to standard approaches, based on full unsteady flow simulations, followed by a near-field FEM based approach and a BEM method for the far-field noise propagation.

The final comparison between the numerical results and the measurements highlights the capability of the methodology to efficiently predict the unsteady flow field and the radiated sound field.

This content is only available via PDF.
You do not currently have access to this content.