For a competitive low pressure axial fan design low noise emission is as important as high efficiency. In this paper a new design method for low pressure fans with a small hub to tip ratio including blade sweep is introduced and discussed based on experimental investigations. Basis is an empirical axial and tangential velocity distribution at the rotor outlet combined with a distinctive sweep angle distribution along the stacking line. Several fans were designed, built and tested in order to analyze the aerodynamic as well as the aeroacoustic behavior.

For the aerodynamic performance particular attention was paid to compensate the influence of reduced pressure rise and efficiency due to increasing blade sweep. This was achieved by a method of increasing the blade chord depending on the local sweep angle which is based on single airfoil data. The tested fans without this compensation revealed a significant noise reduction effect of up to approx. 6 dB(A) for a tip sweep angle of 64° which was accompanied by an unsatisfactory effect of reduced overall aerodynamic performance.

The second group of fans did not only confirm the method of the aerodynamic compensation by a nearly unchanged pressure rise and efficiency characteristic but also revealed an increased aeroacoustic benefit of in average 9.5 dB(A) compared to the unswept version. Beside the overall characteristics the individual differences between the designs are also discussed using results of wall pressure measurements which show some significant changes of the blade tip flow structure.

This content is only available via PDF.
You do not currently have access to this content.