The objective of the current paper is to gain an understanding of the effects of inlet swirling flow on the flow field through short annular transition diffusers and nozzles. These devices are representative of the primary driving nozzles for certain exhaust ejector systems. It is known that strongly swirling flow can degrade ejector performance due to core separation. It is believed that minor changes in driving nozzle shape can improve ejector performance significantly.

Two configurations of a diffuser/nozzle were tested experimentally and numerically under different swirl strengths. The two configurations were mounted on an annular flow wind tunnel. Two shapes of the annulus’ centre body end; square and elliptical, were used. Based on the hydraulic inlet diameter, average velocity and temperature in the annulus of the wind tunnel, the measurements were carried out at Mach range of 0.21 to 0.26 with Reynolds number of 2.3 to 2.7×105.

Ansys14 was used for the CFD simulations. The measured velocity profiles in the annulus were used as input flow conditions in the CFD investigation. The RNG k-ε turbulence model was used in the CFD simulations. The measured velocity profiles at the device exit, and measured surface pressures on the annulus, duct and nozzle walls were compared with the CFD predictions. The measured back pressure coefficient and total pressure loss through the diffuser systems were compared with the CFD predictions. A reasonable agreement between the experimental data and numerical predictions was observed.

It was found computationally that the size of the central recirculation zone behind the annulus centre body has negative effects on the diffuser performance under different swirl numbers. The square shape of the annulus’ centre body end increased the back pressure and total pressure loss coefficients over the elliptical shape. However, the flow uniformity at the duct and nozzle exits improved with the square shape over the elliptical end. These differences may have a significant effect on ejector pumping.

This content is only available via PDF.
You do not currently have access to this content.