Many gas turbine engines operate in harsh environments where the engines ingest solid particles. Ingested particles accelerate the deterioration of engine components and reduce the engine’s service life. Understanding particle impacts on materials used in gas turbines at representative engine conditions leads to improved designs for turbomachinery operating in particle-laden environments. Coefficient of Restitution (COR) is a measure of particle/wall interaction and is used to study erosion and deposition. In the current study, the effect of temperature (independent of velocity) on COR was investigated. Arizona Road Dust (ARD) of 20–40/μm size was injected into a flow field to measure the effects of temperature and velocity on particle rebound. Target coupon materials used were 304 stainless steel and Hastelloy X. Tests were performed at three different temperatures, 300 K (ambient), 873 K, and 1073 K while the velocity of the flow field was held constant at 28 m/s. The impingement angle of the bulk sand on the coupon was varied from 30 ° to 80 ° for each temperature tested. The COR was found to decrease substantially from the ambient case to the 873 K and 1073 K cases. This decrease is believed to be due to the changes in the surface of both materials due to oxide layer formation which occurs as the target material is heated. The Hastelloy X material exhibits a larger decrease in COR than the stainless steel 304 material. The results are also compared to previously published literature.
Skip Nav Destination
Close
Sign In or Register for Account
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
June 16–20, 2014
Düsseldorf, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4557-8
PROCEEDINGS PAPER
Effect of Temperature on Microparticle Rebound Characteristics at Constant Impact Velocity
J. M. Delimont,
J. M. Delimont
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
M. K. Murdock,
M. K. Murdock
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
S. V. Ekkad
S. V. Ekkad
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
J. M. Delimont
Virginia Tech, Blacksburg, VA
M. K. Murdock
Virginia Tech, Blacksburg, VA
W. F. Ng
Virginia Tech, Blacksburg, VA
S. V. Ekkad
Virginia Tech, Blacksburg, VA
Paper No:
GT2014-25687, V01AT01A013; 11 pages
Published Online:
September 18, 2014
Citation
Delimont, JM, Murdock, MK, Ng, WF, & Ekkad, SV. "Effect of Temperature on Microparticle Rebound Characteristics at Constant Impact Velocity." Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 1A: Aircraft Engine; Fans and Blowers. Düsseldorf, Germany. June 16–20, 2014. V01AT01A013. ASME. https://doi.org/10.1115/GT2014-25687
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
12
Views
0
Citations
Related Proceedings Papers
Related Articles
Compressor Erosion and Performance Deterioration
J. Fluids Eng (September,1987)
Prediction of Erosion Due to Solid Particle Impact in Single-Phase and Multiphase Flows
J. Pressure Vessel Technol (November,2007)
Laser Measurements of Fly Ash Rebound Parameters for Use in Trajectory Calculations
J. Turbomach (October,1987)
Related Chapters
Test Methods
Consensus on Operating Practices for the Sampling and Monitoring of Feedwater and Boiler Water Chemistry in Modern Industrial Boilers (CRTD-81)
Application Analysis and Experimental Study on Performance of Energy-Saving Electret Fiber
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Forging Strain Rate and Deformation Temperature Effects on the Fracture Toughness Properties of Type 304L Stainless Steel Precharged with Tritium
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments