Many researchers proposed methods for improving the efficiency of small Horizontal Axis Wind Turbines (HAWTs). One of the methods developed to increase the efficiency of HAWTs and to overcome the theoretical Betz limit is the introduction of a converging – diverging casing around the turbine. To further improve the performance of the diffuser a flange is placed at its outlet, which smoothes the flow along the diffuser interior, allowing larger diffusion angles to be utilized. The purpose of this research work is the aerodynamic design and computational analysis of such an arrangement with the use of Computational Fluid Dynamics (CFD). First, a HAWT rotor rotating at 600 RPM was designed with the use of the Blade Element Momentum (BEM) method. The three rotor blades are constructed using the NREL airfoil sections family S833, S834 and S835. The power coefficient of the rotor was optimised in a wind speed range of 5 – 10 m/s, with a maximum value of 0.45 for a wind speed of 7m/s. A full three-dimensional CFD analysis was carried out for the modeling of the flow around the rotor and through the flanged diffuser. The computational domain consisted of two regions with different frames of reference (a stationary and a rotating). The rotating frame rotates at 600 RPM and includes the rotor with the blades. All the simulations were performed using the commercial CFD software package ANSYS CFX. The Shear Stress Transport turbulence model was used for the simulations. Detailed flow analysis results are presented, dealing with the various investigated test cases, a) isolated turbine rotor, b) diffuser without the presence of the turbine, and c) the full turbine – diffuser arrangement for different flange heights and wind speeds. By varying the height of the flange and the wind speed, the effects of the above on the flow field and the power coefficient of the turbine were studied. The CFD resulting power coefficients are also compared and good agreement with existing in the literature experimental data was obtained. The results showed that there is a significant improvement in the performance of the wind turbine (by a factor from 2 to 5 on power coefficient at high blade tip speed ratio) and the proposed modification is particularly attractive for small wind turbines. The particular characteristics of the flow field, that are responsible for this improvement are identified and analysed in detail offering a better understanding of the physical processes involved.

This content is only available via PDF.
You do not currently have access to this content.