Freestanding turbine blades have typically low structural damping and thus require additional friction damping devices, such as underplatform dampers. The friction coupling between neighboring blades reduces response amplitude and increases resonance frequency. Along with forced response excitation large blades, especially of last stage, could be excited by fluid structural interaction (flutter). To prevent such excitation alternate mistuned blade patterns are beneficial disturbing traveling waves in the stage.

In this paper the influence of alternate mistuning is investigated with a simplified oscillator chain as well as a bladed disk assembly coupled by frictional contacts. It is pointed out that the performance of friction coupling can be improved by alternate mistuning as long as the engine order of the excitation is below quarter of the number of blades. Alternate mistuning causes a mode coupling between two nodal diameter vibration mode shapes allowing for energy transfer. The in-house developed software code DATAR is enhanced and alternate mistuning can be applied to the blades as well as to the damping elements. For validation the DATAR code was applied to an alternate mistuned last stage blade of a Siemens gas turbine and compared with available field engine measurement.

This content is only available via PDF.
You do not currently have access to this content.