This paper discusses the application of different transition-sensitive turbulence closures to the prediction of low-Reynolds number flows in high-lift cascades operating in low-pressure turbine (LPT) conditions. Different formulations of the well known γ – R̃eθt model are considered, and compared to a recently developed transition model based on the laminar kinetic energy (LKE) concept. All those approaches have been coupled to the Wilcox k – ω turbulence model. The performance of the transition-sensitive closures has been assessed by analyzing three different high lift cascades, recently tested experimentally in two European research projects (UTAT and TATMo). Such cascades (T106A, T106C, and T108) feature different loading distributions, different suction side diffusion factors, and they are characterized by suction side boundary layer separation when operated in steady inflow. Both steady and unsteady inflow conditions (induced by upstream passing wakes) have been studied. A particular attention has been devoted to the treatment of crucial boundary conditions like the freestream turbulence intensity and the turbulent length scale. A detailed comparison between measurements and computations, in terms of blade surface isentropic Mach number distributions and cascade lapse rates will be presented and discussed. Specific features of the computed wake-induced transition patterns will be discussed for selected Reynolds numbers. Some guidelines concerning the computations of high-lift cascades for LPT applications using RANS/URANS approaches and transition-sensitive closures will be finally reported.
Skip Nav Destination
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
June 3–7, 2013
San Antonio, Texas, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5523-2
PROCEEDINGS PAPER
Predicting High-Lift LP Turbine Cascades Flows Using Transition-Sensitive Turbulence Closures
Roberto Pacciani,
Roberto Pacciani
University of Florence, Firenze, Italy
Search for other works by this author on:
Michele Marconcini,
Michele Marconcini
University of Florence, Firenze, Italy
Search for other works by this author on:
Andrea Arnone,
Andrea Arnone
University of Florence, Firenze, Italy
Search for other works by this author on:
Francesco Bertini
Francesco Bertini
Avio S.p.A., Rivalta di Torino, TO, Italy
Search for other works by this author on:
Roberto Pacciani
University of Florence, Firenze, Italy
Michele Marconcini
University of Florence, Firenze, Italy
Andrea Arnone
University of Florence, Firenze, Italy
Francesco Bertini
Avio S.p.A., Rivalta di Torino, TO, Italy
Paper No:
GT2013-95605, V06BT37A039; 13 pages
Published Online:
November 14, 2013
Citation
Pacciani, R, Marconcini, M, Arnone, A, & Bertini, F. "Predicting High-Lift LP Turbine Cascades Flows Using Transition-Sensitive Turbulence Closures." Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 6B: Turbomachinery. San Antonio, Texas, USA. June 3–7, 2013. V06BT37A039. ASME. https://doi.org/10.1115/GT2013-95605
Download citation file:
18
Views
Related Proceedings Papers
Related Articles
Related Chapters
Aerodynamic Performance Analysis
Axial-Flow Compressors
Introduction
Design and Analysis of Centrifugal Compressors
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)