The aerodynamic performance of lifting surfaces operating at low Reynolds number conditions is impaired by laminar separation. For a modern low-pressure turbine (LPT) stage, in particular when designed for high blade loadings, laminar separation at cruise conditions can result in significant performance degradation. Understanding of the physical mechanisms and hydrodynamic instabilities that are associated with laminar separation and the formation of laminar separation bubbles (LSBs) is key for the design and development of effective and efficient active flow control (AFC) devices. For the present work, laminar separation (part I) and its control (part II) were investigated numerically by employing highly-resolved, high-order accurate direct numerical simulations (DNS).

This content is only available via PDF.
You do not currently have access to this content.