This paper presents the development of a reduced-order model based on the proper orthogonal decomposition (POD) method. The POD method has been developed to predict turbomachinery flows modeled by the Reynolds-averaged Navier–Stokes equations. The purpose of using a POD-based reduced-order model is to decrease the computational cost of turbomachinery flows. The POD model has been tested for two configurations: a canonical channel with a bump case and the transonic NASA Rotor 67 case. The Rotor 67 case has been simulated at design wheel speed and at three off-design conditions: 70, 80, and 90% of the wheel speed. The results of the POD-based reduced-order model where in excellent agreement with the full-order model results. The computational time of the reduced-order model was approximately one order of magnitude smaller than that of the full-order model.

This content is only available via PDF.
You do not currently have access to this content.