The paper describes an efficient design method for highly loaded transonic compressor stages which considers a balance between efficiency at the design point and stability at part-speed. Because of the high dimensionality of the problem, two levels of model complexity are included in the design method. The first level consists of optimizing the rotor and stator profiles positioned at three streamtubes along the span. The streamtube height and radius variations are included in the computational domain and it is analyzed using a 3D RANS solver incorporating a mixing plane between the components. Due to the relatively low complexity of this quasi-3D analysis, it is fast enough to explore a large design space. With the aid of the resulting pareto-fronts, the designer can select profiles with the appropriate trade between stability and efficiency. The initial 3D compressor stage is generated based on the selected 2D profiles and the method continues to the higher complexity mode where the 3D shapes of the rotor and stator are optimized to gain further performance improvements. To verify that the design method is feasible, it is used to re-design the first compressor stage of a three-stage highly loaded transonic compressor. The compressor stage designed with the presented design method has higher part-speed stability without a compromise in the efficiency compared to the original design. This is also verified when analyzing the new design in the full compressor module.
Skip Nav Destination
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
June 3–7, 2013
San Antonio, Texas, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5523-2
PROCEEDINGS PAPER
Balancing Efficiency and Stability in the Design of Transonic Compressor Stages
Lars Ellbrant,
Lars Ellbrant
Chalmers University of Technology, Gothenburg, Sweden
Search for other works by this author on:
Lars-Erik Eriksson,
Lars-Erik Eriksson
Chalmers University of Technology, Gothenburg, Sweden
Search for other works by this author on:
Hans Mårtensson
Hans Mårtensson
GKN Aerospace, Trollhättan, Sweden
Search for other works by this author on:
Lars Ellbrant
Chalmers University of Technology, Gothenburg, Sweden
Lars-Erik Eriksson
Chalmers University of Technology, Gothenburg, Sweden
Hans Mårtensson
GKN Aerospace, Trollhättan, Sweden
Paper No:
GT2013-94838, V06BT37A017; 14 pages
Published Online:
November 14, 2013
Citation
Ellbrant, L, Eriksson, L, & Mårtensson, H. "Balancing Efficiency and Stability in the Design of Transonic Compressor Stages." Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 6B: Turbomachinery. San Antonio, Texas, USA. June 3–7, 2013. V06BT37A017. ASME. https://doi.org/10.1115/GT2013-94838
Download citation file:
30
Views
Related Proceedings Papers
Related Articles
A Time-Domain Harmonic Balance Method for Rotor/Stator Interactions
J. Turbomach (January,2012)
Rotor-Stator Interactions in a Four-Stage Low-Speed Axial Compressor—Part II: Unsteady Aerodynamic Forces of Rotor and Stator Blades
J. Turbomach (October,2004)
Direct Constrained Computational Fluid Dynamics Based Optimization of Three-Dimensional Blading for the Exit Stage of a Large Power Steam Turbine
J. Eng. Gas Turbines Power (January,2003)
Related Chapters
Other Components and Variations
Axial-Flow Compressors
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Stability and Range
Design and Analysis of Centrifugal Compressors