The static pressure recovery coefficient of the exhaust hood has significant impact on the aerodynamic performance of the low pressure cylinder for steam turbines. Numerical investigations on the aerodynamic performance of the exhaust hood and full last stage with consideration of the rotor tip leakage were presented in this paper. Three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions and k–ε turbulent model were utilized to analyze the static pressure recovery performance of the exhaust hood using the commercial CFD software ANSYS-CFX. Effect of the last stage rotor tip leakage flow on the aerodynamic performance of the downstream exhaust hood was conducted by comparison of the computational domains for the exhaust hood and full last stage with and without tip clearance. The numerical results show that the last stage rotor tip leakage jet can suppress the flow separation near the diffuser wall of the exhaust hood and improve its static pressure recovery performance. The detailed flow fields of the exhaust hood with and without consideration of the rotor tip leakage flow were also illustrated and corresponding flow mechanism was discussed.

This content is only available via PDF.
You do not currently have access to this content.