Steady-state Reynolds Averaged Navier-Stokes (RANS) equations are solved in the present numerical investigation to simulate the reactive two-phase flow in a model aero-engine combustor, and the reactive flow field with NOx emissions is analyzed. The gaseous phase is modeled by the modified SST turbulence model, and the liquid phase is modeled by Lagrangian tracking method considering the droplet breakup, collision and evaporation. Turbulence-combustion interaction is modeled by the extended coherent flame model, and NOx emissions are modeled by solving the species transport equation based on the assumption of frozen temperature. The fuel system of the present simulated combustor is radially staged, with a main stage employing the principle of lean prevaporized and premixed (LPP) concept to reduce pollutant emission, and a pilot stage burning a diffusion flame for flame stability. For the exit temperature quality improvement, dilution air is assigned with little amount of airflow. Detailed numerical results including exit temperature distribution, dominant burning performances and species distributions are evaluated for the combustion with and without dilution air. The influence of upstream burning characteristics to downstream temperature distribution is assessed. Numerical prediction of NOx emission demonstrates its capability of a reasonable reduction, and the exit temperature pattern with the dilution air is also able to fulfill its design target.
Skip Nav Destination
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
June 3–7, 2013
San Antonio, Texas, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5516-4
PROCEEDINGS PAPER
Numerical Prediction of NOx Emission and Exit Temperature Pattern in a Model Staged Lean Premixed Prevaporized Combustor
Man Zhang,
Man Zhang
AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China
Search for other works by this author on:
Hao Wu,
Hao Wu
AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China
Search for other works by this author on:
Hao Wang
Hao Wang
AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China
Search for other works by this author on:
Man Zhang
AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China
Hao Wu
AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China
Hao Wang
AVIC Commercial Aircraft Engine Co., Ltd., Shanghai, China
Paper No:
GT2013-95235, V03CT17A008; 10 pages
Published Online:
November 14, 2013
Citation
Zhang, M, Wu, H, & Wang, H. "Numerical Prediction of NOx Emission and Exit Temperature Pattern in a Model Staged Lean Premixed Prevaporized Combustor." Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 3C: Heat Transfer. San Antonio, Texas, USA. June 3–7, 2013. V03CT17A008. ASME. https://doi.org/10.1115/GT2013-95235
Download citation file:
70
Views
Related Proceedings Papers
Related Articles
In Situ Detailed Chemistry Calculations in Combustor Flow Analyses
J. Eng. Gas Turbines Power (October,2001)
Emissions Reduction by Varying the Swirler Airflow Split in Advanced Gas Turbine Combustors
J. Eng. Gas Turbines Power (July,1993)
Predictions of NO x Formation Under Combined Droplet and Partially Premixed Reaction of Diffusion Flame Combustors
J. Eng. Gas Turbines Power (January,2002)
Related Chapters
Hydro Tasmania — King Island Case Study
Hydro, Wave and Tidal Energy Applications
The Identification of the Flame Combustion Stability by Combining Principal Component Analysis and BP Neural Network Techniques
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential