Film cooling effects on endwalls in the stagnation point region are of special interest since the heat transfer is influenced drastically by secondary flows. Additionally, a complex vortex structure exists along the stagnation streamline which influences heat transfer on the endwall. The flow phenomenon is described and discussed in the open literature but it is still difficult to predict the heat transfer on the endwall and the turbine profile by CFD methods with sufficient accuracy.

In this paper it is examined how the flow field in the stagnation region should be simulated using CFD. The effect of meshes with various grid resolutions and turbulence models as k-ε-, k-ω-SST- and DES-turbulence models have been investigated. The CFD-data are compared with the experimental results obtained by Naphthalene Sublimation Method, Pressure Sensitive Paint, Laser Induced Fluorescence and Particle Image Velocimetry. Three cases, namely film cooling on a flat plate, the endwall flow near a symmetrical airfoil and the symmetrical airfoil with endwall film cooling, are examined in detail.

This content is only available via PDF.
You do not currently have access to this content.