Film cooling is a cooling technique widely used in high-performance gas turbines to protect the turbine airfoils from being damaged by hot flue gases. Motivated by the need to further improve the turbine hot section cooling performance, a new cooling scheme, mist/air film cooling is investigated. A small amount of tiny water droplets with an average diameter about 7 μm (mist) is injected into the cooling air to enhance the cooling performance. One key feature in understanding mist cooling is the ability to capture droplet information. This paper presents the experimental facility and instrumentation of a mist/air film cooling study with both heat transfer and droplet measurements.

A wind tunnel system and test facilities are built. A Phase Doppler Particle Analyzer (PDPA) system is employed to measure the two-phase flow characteristics, including droplet size, droplet dynamics, velocity, and turbulence. Infrared camera and thermocouples are both used for temperature measurements. An extensive uncertainty analysis is performed to assist in identifying large uncertainty sources and planning for experimental procedure.

It was found during the experiment design process that resolving the mist agglomeration problem is the key in successfully generating a well-controlled mist/air mixture and reducing experimental uncertainties. The test apparatus has proven to serve the purpose well to investigate mist/air film cooling with both heat transfer and droplet measurements. Selected experimental data is presented.

This content is only available via PDF.
You do not currently have access to this content.