Leaf seals are filament seals for use at static to rotating interfaces in rotating machinery. They are capable of withstanding significant pressure differences while minimising leakage. One of their advantages over comparable filament seals is the ability of the leaves to generate significant hydrodynamic lift at their tips. If this force is sufficient to lift the leaf tip away from the rotor, leaf wear is eliminated and an infinite life seal is created. In order to design seals that are capable of operating in this mode, a good understanding of the hydrodynamic effect and how it interacts with the seal is required. This paper presents a detailed theoretical and experimental investigation into hydrodynamic air-riding in leaf seals. First the hydrodynamic lift is investigated by analysing the flow field and forces generated between a static structure resembling the leaf tip geometry and a moving surface resembling the rotor. This allows the fundamental effects behind air-riding to be identified and quantified. Next a coupled model is presented, which captures the interactions between the lift force and the leaf tip movements. This gives a full picture of the steady-state fluid-structure interactions controlling air-riding in leaf seals. Based on these results several guidelines for obtaining air-riding are extracted. Finally the predictions from the coupled model are compared to results from a high speed test campaign using a prototype leaf seal. Good agreement is found, confirming the presence of hydrodynamic air-riding in leaf seals and demonstrating the accuracy of the presented coupled model.
Skip Nav Destination
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
June 3–7, 2013
San Antonio, Texas, USA
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5514-0
PROCEEDINGS PAPER
Hydrodynamic Air-Riding in Leaf Seals
Ingo H. J. Jahn,
Ingo H. J. Jahn
University of Oxford, Oxford, UK
Search for other works by this author on:
David Gillespie,
David Gillespie
University of Oxford, Oxford, UK
Search for other works by this author on:
Paul Cooper
Paul Cooper
Alstom Power, Rugby, UK
Search for other works by this author on:
Ingo H. J. Jahn
University of Oxford, Oxford, UK
David Gillespie
University of Oxford, Oxford, UK
Paul Cooper
Alstom Power, Rugby, UK
Paper No:
GT2013-95585, V03AT15A015; 10 pages
Published Online:
November 14, 2013
Citation
Jahn, IHJ, Gillespie, D, & Cooper, P. "Hydrodynamic Air-Riding in Leaf Seals." Proceedings of the ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. Volume 3A: Heat Transfer. San Antonio, Texas, USA. June 3–7, 2013. V03AT15A015. ASME. https://doi.org/10.1115/GT2013-95585
Download citation file:
36
Views
Related Proceedings Papers
Related Articles
Numerical Investigations of Leakage Performance Degradations in Labyrinth and Flexible Seals Due to Wear
J. Eng. Gas Turbines Power (May,2021)
Optimized Shroud Design for Axial Turbine Aerodynamic Performance
J. Turbomach (July,2008)
Evaluation of Flow Behavior for Clearance Brush Seals
J. Eng. Gas Turbines Power (January,2008)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Unbalance
Fundamentals of Rotating Machinery Diagnostics
Understanding the Problem
Design and Application of the Worm Gear