Bio-Synthetic Paraffinic Kerosene (Bio-SPK) is one of the most anticipated renewable energy to conventional Jet kerosene (CJK). Bio-SPK is plant lipid which is thermo-chemically converted to kerosene like compositions to serve as “Drop-in” biojet fuel. The environmental impact of Bio-SPK is to be understood to determine its potential as a carbon neutral / negative fuel. Assessment of Life Cycle Emissions of Bio-SPKs (ALCEmB) aims to deliver a quantitative, life cycle centered emissions (LCE) model, reporting the process related-carbon footprint of Bio-SPKs. This study also encompasses the key emission-suppressing feature associated with biofuels, termed as “Biomass Credit”. The Bio-SPKs chosen for this analysis and ranked based on their “Well-to-Wake” emissions are Camelina SPK, Microalgae SPK and Jatropha SPK. The Greenhouse gases (GHGs) emitted at each stage of their life cycles have been represented in the form of CO2 equivalents and the LCE of each of the Bio-SPKs were weighed against that of a reference fuel, the CJK. Camelina SPK among the three Bio-SPKs analyzed, was determined to have a relatively lower carbon footprint with a <70% carbon reduction relative to CJK followed by Jatropha SPK and Microalgae SPK respectively. In general, Bio-SPKs were able to reduce their overall LCE by 60–70%, at baseline scenario, relative to its fossil derived counterpart.

This content is only available via PDF.
You do not currently have access to this content.