Liquid jets in cross air flows are widely used and play an important role in propulsion systems, such as ramjet combustors. In this paper, experiments were carried out to investigate the properties of the primary breakup of liquid jets in subsonic transverse airflows at low Weber number. The test ranges included crossflow Weber numbers of 0.5–6.7, liquid-to-gas momentum ratios of 3–120, and Ohnesorge number of 0.0086. Four different injectors with diameter 0.4mm, 0.5mm, 0.6mm and 1mm have been used. A high speed camera was used to observe the jet column breakup process. Results show that the surface wavelength decreases not only with the increase of the gas Weber number but also with the increase of the momentum ratio. The breakup length decreases with the increase of the gas Weber number, in addition to its increase with the increase of the momentum ratio. The droplet diameter decreases with the increase of both the gas Weber number and momentum ratio, although the gas Weber number will dominate the breakup process. The surface wavelength, breakup length, and droplet diameter were also analyzed with to obtain semi-theoretical correlations.

This content is only available via PDF.
You do not currently have access to this content.