This paper reports several CFD analyses of a centrifugal compressor stage with a vaned diffuser at high pressure ratio using different techniques to model the rotor-stator interaction. A conventional steady stage calculation with a mixing-plane type interface between the rotor and stator was used as a baseline. This simulation gave excellent agreement with the measured performance characteristics at design speed, demonstrating the ability of the particular steady simulation used to capture the essential features of the blockage interaction between the components.
A full annulus simulation using a transient rotor-stator interaction (TRS) method was then used at the peak efficiency point to obtain a fully unsteady reference solution, and this predicted a small increase in peak efficiency. Finally, a computationally less expensive unsteady calculation using a Time Transformation (TT) method was carried out. This gave similar results to the fully transient calculation suggesting that this is an acceptable approach to estimate unsteady blade loading from the interaction.
The impeller diffuser spacing was then reduced from 15 to 7% of the impeller tip radius using the more affordable TT approach. This identified an increase in efficiency of 1% and predicted unsteady pressure fluctuations in the impeller which were 116% higher with the closely spaced diffuser.