The traditional annulus casing treatment often pays the price of lowered efficiency for improving the stall margin of a compressor under inlet distortion. In view of the unsymmetry of the inlet flow-field of compressors, partial casing treatment was used to control the flow in a transonic axial-flow compressor with arc-skewed-slots deployed at different circumferential positions under inlet distortion. The experimental results indicate that when the partial casing treatment is arranged on the undistorted and distorted sectors, the stall margin is enhanced by 8.02%, with the relative peak efficiency improved simultaneously by 2.143%, compared with the case of solid casing at 98% rotating speed. By contrast, the traditional casing treatment increases the stall-margin by 23.13%, but decreases the relative peak efficiency by 0.752%. By analyzing dynamic and static experimental data, the mechanism underlying the partial casing treatment was also studied in detail here. The disturbances of inlet flow were restrained by annulus casing treatment, nevertheless the total pressure ratio was decreased obviously in the distorted sector. As a result, the stall-margin is improved, but the relative peak efficiency is decreased too. When the partial casing treatment was arranged on the undistortded and distorted sectors, the stall disturbances was thereby restrained. So the stall margin was enhanced. In addition, the total pressure ratio was improved by the partial casing treatment in the distorted and transition sectors, and thus the relative peak efficiency was also increased markedly.

This content is only available via PDF.
You do not currently have access to this content.