Reduced order modeling strategies are applied to the aeroelastic stability analysis of the highly loaded transonic DLR UHBR fan. Latin hypercube and risk-based sampling procedures are employed to choose samples in a multidimensional parameter space that enable an accurate prediction of the flutter boundary without performing unsteady CFD simulations for several modes in the whole operating range. The combination with an influence coefficient approach facilitates even further savings in terms of computational time without losing physics quality.

This content is only available via PDF.
You do not currently have access to this content.