This paper deals with a new damping concept for turbine blade vibrations utilizing piezoelectric material. A passive piezo damper consists of a piezoelectric element and a passive electric network connected to its electrodes. The damping performance depends on the size and location of the piezoelectric element with respect to the mode shape of the mechanical strain. Numerical and experimental investigations are carried out on a rigidly clamped simplified compressor blade at stand still and ambient conditions. An optimization process incorporating electromechanical finite element calculations determines the optimal position of the piezo damper in regard to the mode shape of interest. By applying the computed and measured Frequency Response Functions, the damping performance with and without piezo-damper are compared and referred to the measured material damping. The obtained numerical results are in very good agreement with the measured data, leading to a promising damping performance in real application.

This content is only available via PDF.
You do not currently have access to this content.