The vane used in a low pressure end of steam turbine is usually fixed to shroud and casing by welding both ends. In such a vane structure, the damping in loading operation is comprised of the material damping and the aerodynamic damping, because the structural damping is very small. In this paper, first, the vane is modeled by the uniform beam fixed at both ends, and the effect of the material damping on the vane flutter is studied. In the stability analysis, the simple one-degree-of-freedom model is applied, where the linear aerodynamic model is used. In other words, it is assumed that the aerodynamic force due to the working fluid is proportional to the vane velocity and the negative damping coefficient does not change with amplitude. The allowable aerodynamic damping for the vane flutter is calculated and compared for the solid vane and the hollow vane. In addition, the vibration analysis of the actual steam turbine vane is carried out by 3D FEA (Finite Element Analysis), and the material damping of the solid and hollow vane is calculated by use of the results by FEA. The stability of the solid vane and the hollow vane on the flutter is also evaluated by use of the results calculated by FEA. From these results, the material damping characteristics of the steam turbine vane are clarified, as well as the effect of the material damping of the steam turbine vane on the flutter suppression.

This content is only available via PDF.
You do not currently have access to this content.