Turbo-compounding (TC) is a possible solution to make transportation more ecological. Matching the engine with an appropriate power turbine is the key for the turbo-compounded engine performance optimization. Conventionally, the matching work is based on a turbine map. The influences of the turbine geometry parameters on the engine performance are taken into account.

A new matching method based on the turbine through flow model is presented in this paper. The influences of geometry parameters of the power turbine on the diesel engine performance are investigated. The research focuses on the effects of inlet blade radius and height, exit blade angle and tip radius of the power turbine on the engine BSFC and torque. Results show that the outlet blade angle and tip radius have stronger impacts on BSFC and torque of the engine than the inlet blade radius and height. Further studies show that the engine cycle and air mass flow rate are more sensitive to the outlet blade tip radius and angle than the inlet blade radius and height.

This content is only available via PDF.
You do not currently have access to this content.