Rotating and stationary orifices are used within the secondary air system to transport sealing/ cooling air to its consumers. This paper reports on measurements of the discharge coefficient of rotating radial holes as their aerodynamical behaviour is different from the one of axial or stationary holes due to the presence of centrifugal and Coriolis forces.

A test rig containing two independently rotating shafts was designed to investigate the flow phenomena and the discharge behaviour of these orifices. The required air mass flow is delivered by a screw compressor and can be regulated independently to supply the inner and outer annular passages of the test rig. It allows measurements of the discharge coefficient with cross flow and co- and counter-rotating shafts with centrifugal and centripetal flow through the rotating holes.

On the outer shaft, absolute and differential pressures and temperatures in the rotating frame of reference are measured via a telemetry system. Measurements of the discharge coefficient for sharp-edged and rounded shaft inserts at a variety of different flow conditions and with swirl added to the air upstream of the orifice are presented. Furthermore experiments were conducted to quantify the influence of the inner shaft (non-rotating and rotating) on the discharge behaviour of orifices in the outer shaft. To complement the data acquired from the experiments and to get a better understanding of the flow field near the rotating holes also numerical flow simulations were performed.

This content is only available via PDF.
You do not currently have access to this content.