Unexpected outages and maintenance costs reduce plant availability and can consume significant resources to restore the unit to service. Although companies may have the means to estimate cash flow requirements for scheduled maintenance and on-going operations, estimates for unplanned maintenance and its impact on revenue are more difficult to quantify, and a large fleet is needed for accurate assessment of its variability. This paper describes a study that surveyed 388 combined-cycle plants based on 164 D/E-class and 224 F-class gas turbines, for the time period of 1995 to 2009. Strategic Power Systems, Inc. (SPS®), manager of the Operational Reliability Analysis Program (ORAP®), identified the causes and durations of forced outages and unscheduled maintenance and established overall reliability and availability profiles for each class of plant in 3 five-year time periods. This study of over 3,000 unit-years of data from 50 Hz and 60 Hz combined-cycle plants provides insight into the types of events having the largest impact on unplanned outage time and cost, as well as the risks of lost revenue and unplanned maintenance costs which affect plant profitability. Outage events were assigned to one of three subsystems: the gas turbine equipment, heat recovery steam generator (HRSG) equipment, or steam turbine equipment, according to the Electric Power Research Institute’s Equipment Breakdown Structure (EBS). Costs to restore the unit to service for each main outage cause were estimated, as were net revenues lost due to unplanned outages. A statistical approach to estimated costs and lost revenues provides a risk-based means to quantify the impact of unplanned events on plant cash flow as a function of class of gas turbine, plant subsystem, and historical timeframe. This statistical estimate of the costs of unplanned outage events provides the risk-based assessment needed to define the range of probable costs of unplanned events. Results presented in this paper demonstrate that non-fuel operation and maintenance costs are increased by roughly 8% in a typical combined-cycle power plant due to unplanned maintenance events, but that a wide range of costs can occur in any single year.
Skip Nav Destination
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
June 11–15, 2012
Copenhagen, Denmark
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-4469-4
PROCEEDINGS PAPER
Risk-Based Assessment of Unplanned Outage Events and Costs for Combined-Cycle-Plants
Dale Grace,
Dale Grace
Electric Power Research Institute, Palo Alto, CA
Search for other works by this author on:
Thomas Christiansen
Thomas Christiansen
Strategic Power Systems, Inc., Charlotte, NC
Search for other works by this author on:
Dale Grace
Electric Power Research Institute, Palo Alto, CA
Thomas Christiansen
Strategic Power Systems, Inc., Charlotte, NC
Paper No:
GT2012-68435, pp. 577-585; 9 pages
Published Online:
July 9, 2013
Citation
Grace, D, & Christiansen, T. "Risk-Based Assessment of Unplanned Outage Events and Costs for Combined-Cycle-Plants." Proceedings of the ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Volume 3: Cycle Innovations; Education; Electric Power; Fans and Blowers; Industrial and Cogeneration. Copenhagen, Denmark. June 11–15, 2012. pp. 577-585. ASME. https://doi.org/10.1115/GT2012-68435
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Degradation Effects on Combined Cycle Power Plant Performance—Part III: Gas and Steam Turbine Component Degradation Effects
J. Eng. Gas Turbines Power (April,2004)
Modeling the Performance Characteristics of Diesel Engine Based Combined-Cycle Power Plants—Part I: Mathematical Model
J. Eng. Gas Turbines Power (January,2004)
Maximization of the Profit of a Complex Combined-Cycle Cogeneration Plant Using a Professional Process Simulator
J. Eng. Gas Turbines Power (April,2010)
Related Chapters
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies