An experimental study of lean premixed combustion in a swirl-stabilized combustor is undertaken to characterize the dynamics and time scales close to Lean Blow Out (LBO) conditions. Due to the recent interest in syngas fuels, the effect of hydrogen addition on LBO is studied. In present study, both confined and unconfined turbulent methane air premixed flames have been examined with different hydrogen levels during the extinction transition with high speed imaging of OH* chemiluminescence at 2 KHz. Planar laser induced fluorescence measurement of OH is also performed for studying the flame structure. The blowout conditions are approached by reducing the flow rate of fuel mixture or the equivalence ratio with constant air flow rate. The estimated extinction times from high speed imaging and corresponding flame structures are analyzed and compared between confined and unconfined flames with different hydrogen blends. The extinction time scale and the heat release fluctuations show inverse trends with hydrogen addition for the confined and unconfined flames, and are indicative of different stabilization and blow out mechanisms for the two configurations. These mechanisms which involve heat losses from the flame, inner- and corner recirculation zones and unsteady flame dynamics are described in the paper.

This content is only available via PDF.
You do not currently have access to this content.