In recent years, combined cycle power plants showed remarkable progress in the safe operation and reliability of their equipment, mostly because of the reliable control and instrumentation systems available today. However, these systems cannot detect and evaluate inconsistencies in the behaviour of equipment due to failures and avoid trips caused by catastrophic events. Computer models developed to simulate the power plant equipment are often employed in diagnosis tools in order to provide accurate healthy parameters that are compared to the field measured parameters.

In this work, the computer models built for the simulation of some of the main bottoming cycle equipment of a real power plant (steam turbine, HRSG, boiler feed water pumps and condenser) are described. These models were developed through characteristics maps and constitutive equations related to the fluid path analysis, implemented in Fortran language.

The results provided by the developed models for each equipment show good agreement with operational data at base and partial load in simulations that covered a good part of the load domain. Due to the good agreement between the measured parameters values and those calculated through simulation, these models are intended to be included in an on-line fuzzy-based diagnosis system.

This content is only available via PDF.
You do not currently have access to this content.