As part of a European Union (EU) funded H2-IGCC project, a baseline IGCC power plant was established; this was presented at the ASME Turbo Expo 2011 (GT2011-45701). The current paper focuses on a detailed investigation of the impact of using various fuels considering different operating conditions on the gas turbine performance, and the identification of technical solutions for the realization of the targeted fuel flexibility.

Using a lumped model, based on real engine data, compressor and turbine maps of the targeted engine were generated and implemented into the detailed GT model made in the commercial heat and mass balance program, IPSEpro. The implementation was done in terms of look-up tables. The impact of fuel change on the gas turbine island has been investigated and reported in this paper. Calculation results show that for the given boundary conditions, the surge margin of the compressor was slightly reduced when natural gas was replaced by hydrogen-rich syngas. The use of cleaned syngas instead of hydrogen-rich syngas resulted in a considerable reduction of the surge margin and elevation of the turbine outlet temperature (TOT) at design point conditions, when keeping the turbine inlet temperature (TIT) and compressor inlet mass flow unchanged. To maintain the TOT and improve the surge margin, when operating the engine with cleaned syngas, a combination of adjustment of variable inlet guide vanes (VIGV) and reduced TIT was considered. A parameter study was carried out to provide better understanding of the current limitations of the engine and to identify possible modifications to improve fuel flexibility.

This content is only available via PDF.
You do not currently have access to this content.