The thermoacoustic stability of gas turbines depends on a balance of acoustic energy inside the engine. While the flames produce acoustic energy, other areas like the impingement cooling system contribute to damping. In this paper, we investigate the damping potential of an annular impingement sleeve geometry embedded into a realistic environment. A cold flow test rig was designed to represent real engine conditions in terms of geometry, and flow situation. High quality data was delivered by six piezoelectric dynamic pressure sensors. Experiments were carried out for different mean flow velocities through the cooling holes. The acoustic reflection coefficient of the impingement sleeve was evaluated at a downstream reference location. Further parameters investigated were the number of cooling holes, and the geometry of the chamber surrounding the impingement sleeve. Experimental results show that the determining parameter for the reflection coefficient is the mean flow velocity through the impingement holes. An increase of the mean flow velocity leads to significantly increased damping, and to low values of the reflection coefficient.

This content is only available via PDF.
You do not currently have access to this content.