Due to a trend towards Ultra High Bypass Ratio engines, confirmed in projects like NEWAC (New Aero Engine Core Concepts, an European Sixth Frame Work Programme) the corresponding engine/airframe interference is becoming a key aspect in aircraft design. Therefore detailed aerodynamic investigations are required to evaluate the real benefits of these new technologies. The work presented in this paper is to perform these investigations for two typical twin-engine/low-wing transports, using Computational Fluid Dynamics, in order to create a useful integration module for the in-house aircraft/engine performance software TERA2020 (Techno-economic Environmental and Risk Assessment for 2020). The paper presents results for two NEWAC engines: Intercooled Core Long Range (IC L/R) and the Active Core Short Range (AC S/R). The main results show that the engine horizontal positioning can influence mission fuel burn by up to 6.4% for AC S/R and 3.7% for IC L/R respectively.

This content is only available via PDF.
You do not currently have access to this content.