The microstructure of a 2D woven ceramic matrix composite displays significant variability and irregularity. For example, a chemical vapor infiltrated (CVI) SiC/SiC composite exhibits significant amount of porosity arranged in irregular patterns. Furthermore, the fiber tows within a ply frequently have irregular shape and spacing, and the stacked plies are often misaligned and nested within each other. The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure and its variability on the properties and the durability of the material. One key requirement for this effort is the development of methods to characterize the distribution in as-fabricated ceramic matrix composite (CMC) microstructures with the objective of correlating microstructural distribution parameters with mechanical performance. An initial task in this effort was to perform quantitative image analysis of polished cross sections of CVI SiC/SiC composite specimens. This analysis provided sample distributions of various microstructural composite features, including: inter-tow pore sizes and shapes, transverse sectioned tow sizes and shapes, and within ply tow spacing. This information can then be used to quantify the effect of extreme values of these features on the local stress state with the goal of determining the likelihood of matrix cracking at a given external load.

This content is only available via PDF.
You do not currently have access to this content.