A single stage cryogenic liquid turbine is developed for replacing the Joule-Thompson valve and recovering energy from the liquefied air during throttling process in the large-scale internal compression air-separation unit, and evaluation of the impeller axial thrust at different conditions is essential for a reliable bearing design and stable operation. To predict the axial thrust load, a numerical model is established to simulate the turbine flow in a turbine stage environment, which includes the main flow domain (an asymmetrical volute, variable geometry nozzle, impeller, and diffuser), impeller front and back side gaps, and shaft seal leakage. Numerical simulation of flow is conducted by using the ANSYS-CFX. Flow characteristics in both main flow domain and impeller side gaps of the turbine stage are captured and analyzed. The axial thrust is then calculated based on the obtained pressure data in the impeller and its front and side gaps by using a direct integration approach. Flow behaviour in both main flow domain and impeller side gaps has been well exhibited by the numerical results. At the impeller back side gap inlet, the back flow is encountered even for design condition and it returns the impeller main flow stream; the impeller side gap flow has much influence on the axial thrust. To investigate influence of turbine operation condition on axial thrust, flow simulation is conducted at different mass flow rates and inlet pressure for the turbine stage, based on which the axial thrust is calculated. It is demonstrated from the obtained numerical results that the axial thrust increases as the inlet pressure increases and decreases as turbine flow rate increases. Geometry parametric study is conducted for the shaft seal clearances, which has demonstrated that the axial thrust is influenced largely by the clearance size and it decreases as the clearance grows. For the purpose of comparison, the empirical method is also used to predict the axial thrust load. The obtained results are compared to the numerical ones and evident deviation of the empirical from the numerical exists and the reason is that axial force components caused by the impeller main flow stream and its side gap flow are approximated very roughly in the empirical method.

This content is only available via PDF.
You do not currently have access to this content.