As the second part of a two-part paper, this paper presents an experimental investigation of forced response impeller blade vibrations in a centrifugal compressor stage caused by variable inlet guide vanes. Although it is common practice to experimentally test the forced response blade vibration behavior of new impeller designs in terms of strain gauge or tip-timing measurements, the impact of the unsteady blade pressure distribution acting as an unsteady load on the blade surfaces is still not known. A centrifugal compressor impeller was therefore instrumented with dynamic strain gauges and fast-response pressure transducers to measure the forcing of the impeller blades for different compressor operating points and various inlet guide vane angle settings. The results showed a decrease in the excitation amplitudes for reduced mass flow rates of the compressor stage. The inlet guide vane angle setting affected the convection speed of the distortion pattern along the blade surface. An increase in the negative inlet guide vane angle caused higher excitation amplitudes especially in the inducer part of the blade. However, the largest negative inlet guide vane setting caused the smallest excitation amplitudes as this setup introduced the smallest amount of inlet distortion to the inlet flow field. A series of unidirectional fluid structure interaction calculations was performed to show the limitations and requirements of today’s numerical tools.

This content is only available via PDF.
You do not currently have access to this content.