Jet array is an arrangement typically used to cool several gas turbine parts. Some examples of such applications can be found in the impingement cooled region of gas turbine airfoils or in the turbine blade tip clearances control of large aero-engines. In order to correctly evaluate the impinging jet mass flow rate, the characterization of holes discharge coefficient is a compulsory activity. In this work an aerodynamic analysis of jet arrays for active clearance control was performed; the aim was the definition of a correlation for the discharge coefficient (Cd) of a generic hole of the array. The data were taken from a set of CFD RANS simulations, in which the behaviour of the cooling system was investigated over a wide range of fluid-dynamics conditions. More in detail, several different holes arrangements were investigated with the aim of evaluating the influence of the hole spacing on the discharge coefficient distribution. Tests were conducted by varying the jet Reynolds number in a wide range of effective engine operative conditions (Re = 2000–12000, Pressure-Ratio = 1.01–1.6). To point out the reliability of the CFD analysis, some comparisons with experimental data, measured at the “Department of Energy Engineering” of the University of Florence, were drawn. An in depth analysis of the numerical data set has underlined the opportunity of an efficient reduction through the mass velocity ratio of hole and feeding pipe: the dependence of the discharge coefficients from this parameter is roughly logarithmic.

This content is only available via PDF.
You do not currently have access to this content.