A Multi-Zone Radiation method was employed in a conceptual simulator of gas turbine combustion chamber, which is configured as tubular, reverse flow and no film cooling, and equiped with a lean, premixed, low swirl and low Nox burner. Such simplified simulator is typically used for conceptual trade-off and optimization studies during the pre-design phase, when there is no experimental data available and when the number of runs can reach the order of hundreds or more. In the standard procedure, the convection heat fluxes of the annulus passage and combustion chamber liner are approximated by semi-empirical correlations; the thermal radiation flux is estimated by use of viewing factors between adjacent zones only; the heat conduction is estimated by a one-dimensional model. However, the present paper introduces a more accurate and theoretically rigorous estimation of the radiative heat transfer by adopting a Multi-Zone Method. The numerical code inputs are: the geometry; the flame burnout profile at the combustion region; and the mass fluxes through the dilution holes and the burner. The main outputs of the simulator are the average temperature and heat fluxes by conduction, radiation and convection of each zone. The present modeling strategy enabled the authors to assess the basic design characteristics of a conceptual model of combustion chamber, such as its length, its inlet air temperature, its combustion region equivalence ratio, its flame burnout profile, and its wall emissivities. Finally, it has advantages over the simplified radiation models because it takes into account the effects of temperature, burn-out and composition variations of all zones on each zone and vice-versa.
Skip Nav Destination
Implementation of a Multi Zone Radiation Method in a Low
Close
Sign In or Register for Account
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5465-5
PROCEEDINGS PAPER
Implementation of a Multi Zone Radiation Method in a Low NOx Gas Turbine Combustion Chamber Conceptual Simulator
Marcos N. Arima,
Marcos N. Arima
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Search for other works by this author on:
Francisco D. A. de Sousa,
Francisco D. A. de Sousa
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Search for other works by this author on:
Guilherme A. L. da Silva,
Guilherme A. L. da Silva
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Search for other works by this author on:
Natashe N. Branco,
Natashe N. Branco
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Search for other works by this author on:
Cleber Spode,
Cleber Spode
Vale Solucoes em Energia - VSE, S. J. Campos, SP, Brazil
Search for other works by this author on:
Elisangela M. Leal,
Elisangela M. Leal
Vale Solucoes em Energia - VSE, S. J. Campos, SP, Brazil
Search for other works by this author on:
Sergio B. Choze
Sergio B. Choze
Vale Solucoes em Energia - VSE, S. J. Campos, SP, Brazil
Search for other works by this author on:
Marcos N. Arima
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Francisco D. A. de Sousa
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Guilherme A. L. da Silva
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Natashe N. Branco
Aero-Thermal Solutions for Industry, Sa˜o Paulo, SP, Brazil
Cleber Spode
Vale Solucoes em Energia - VSE, S. J. Campos, SP, Brazil
Elisangela M. Leal
Vale Solucoes em Energia - VSE, S. J. Campos, SP, Brazil
Sergio B. Choze
Vale Solucoes em Energia - VSE, S. J. Campos, SP, Brazil
Paper No:
GT2011-46380, pp. 1979-1988; 10 pages
Published Online:
May 3, 2012
Citation
Arima, MN, de Sousa, FDA, da Silva, GAL, Branco, NN, Spode, C, Leal, EM, & Choze, SB. "Implementation of a Multi Zone Radiation Method in a Low NOx Gas Turbine Combustion Chamber Conceptual Simulator." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 5: Heat Transfer, Parts A and B. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 1979-1988. ASME. https://doi.org/10.1115/GT2011-46380
Download citation file:
- Ris (Zotero)
- Reference Manager
- EasyBib
- Bookends
- Mendeley
- Papers
- EndNote
- RefWorks
- BibTex
- ProCite
- Medlars
Close
Sign In
5
Views
0
Citations
Related Proceedings Papers
Related Articles
Coupled Heat Transfers in a Refinery Furnace in View of Fouling Prediction
J. Heat Transfer (July,2016)
Performance of the Various S n Approximations of DOM in a 3D Combustion Chamber
J. Heat Transfer (July,2008)
Immersed Boundary Method for Radiative Heat Transfer Problems in Nongray Media With Complex Internal and External Boundaries
J. Heat Transfer (February,2017)