An experimental study is performed to investigate the heat transfer characteristics and frictional losses in a rib roughened walls combined with detached pin-fins. The overall channel geometry (W = 76.2 mm, E = 25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D = 6.35 mm = 1/4E, three different pin-fin height-to-diameter ratios, H/D = 4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin-tip and one of the endwalls, i.e. C/D = 0, 1, 2, respectively. The rib height-to-channel height ratio is 0.0625. Two newly proposed cross-ribs, namely the broken ribs and full ribs are evaluated in this effort. The broken ribs are positioned in between two consecutive rows of pin-fins, while the full ribs are fully extended adjacent to the pin fins. The Reynolds number, based on the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. The presence of ribs has enhanced the local heat transfer coefficient on the endwall substantially by about 20% up to 50% as compared to the neighboring endwall. In addition, affected by the rib geometry, which is a relatively low profile as compared to the overall height of the channel, the pressure loss seems to be insensitive to the presence of the ribs. However, from the overall heat transfer enhancement standpoint, the baseline cases (without ribs) outperforms cases with broken ribs and full ribs.

This content is only available via PDF.
You do not currently have access to this content.